his-Linked Hydrogen Sulfide Locus of Salmonella typhimurium and Its Expression in Escherichia coli

MARY J. VOLL,* LINDA A. COHEN, AND JAMES J. GERMIDA

Department of Microbiology, University of Maryland, College Park, Maryland 20742

Received for publication 25 April 1979

A his-linked H₂S locus of Salmonella typhimurium has been further defined by direct isolation of H₂S mutants. Expression of this locus in Escherichia coli has been demonstrated.

Salmonella typhimurium produces hydrogen sulfide from thiosulfate, whereas Escherichia coli does not. By analysis of extended his deletions, we previously found that a site affecting H₂S production is located in the region of the S. typhimurium chromosome adjacent to the operator end of the his operon (9). We also found that an F-his plasmid of Salmonella origin carried the wild-type allele of the his-linked locus (9). We report here the isolation of strains of S. typhimurium mutant in H₂S production (phs), two of which have mutations closely linked to the his operon. Evidence for the expression of the his-linked phs locus in E. coli is also presented. A preliminary report of this work has appeared (M. J. Voll, L. A. Cohen, and J. J. Germida, Abstr. Annu. Meet. Am. Soc. Microbiol. 1976, H68, p. 107).

To test for H₂S production, cultures or clones were stabbed into tubes of peptone iron agar (Difco) or plated on Kligler iron agar (Difco) (S. typhimurium strains only) as previously described (9). H₂S substrate specificity was tested by stabbing cultures into tubes of Vogel and Bonner (7) minimal agar supplemented with ferrous chloride and either sodium thiosulfate pentahydrate or sodium sulfite, as described by Lautrop et al. (2). Uninoculated medium controls were included in the assays. F-his strains were always cultured in minimal medium lacking histidine before assay for H₂S production.

Conjugations were performed by cross-streaking diluted cultures of donor and recipient strains on selective agar plates. F-ductants were purified on the selective medium before testing for H₂S production. Transductions were performed using P22 *int4* phage as previously described (9).

Cultures of S. typhimurium hisD477 were treated with UV light or diethyl sulfate by standard mutagenization procedures, subcultured in nutrient broth, and plated to single colonies on Kligler iron agar. About 1,500 to 5,000 colonies were plated in each experiment. Rare pale clones

were purified on Kligler iron agar and then tested for H₂S production in peptone iron stabs. Isolates which gave negative reactions in the stab test were assayed for substrate specificity and for linkage of the phs mutation to his by transductional analysis (Table 1). Nine phs mutants were obtained in three selection experiments. Two of the mutants, CP22 and CP23, had phs mutations which showed about 30% linkage to hisD (second gene in the his operon). These two mutants were obtained in the same selection experiment and could be identical. The other mutants did not show close linkage to the his operon, although loose linkage cannot be ruled out by the data. We were unable to investigate the molecular nature of the mutation(s) in CP22 and CP23 by reversion analysis, since medium selective for H₂S-producing cells is not available.

None of the mutants produced H₂S from thiosulfate. The parent strain and some of the mutant strains showed a delayed production of H₂S with sodium sulfite as the substrate. On this basis the mutants could be divided into three classes: sulfite reducing, with *phs* mutations linked to *his*; sulfite reducing, with *phs* mutations unlinked to *his*, and sulfite nonreducing, with *phs* mutations unlinked to *his*. The ability of the mutants to reduce sulfite correlated with their ability to reduce nitrate (G. W. Chang, personal communication). The mutations unlinked to *his* have not been mapped.

Two F-his plasmids, FS400 and FS401, which carry the his-gnd region of S. typhimurium have been isolated (8). These plasmids have been maintained in our laboratory in his operon deletion strains of E. coli. We reported that FS401 carries the wild-type his-linked phs locus since it restores H₂S production to phs-his deletion strains of S. typhimurium (9). FS401 also restores H₂S production to strains CP22 and CP23. We reported that FS400 does not carry a wild-type phs locus based on F-duction tests using strain SB2063 (FS400/E. coli SB2201) (9). Sub-

TABLE 1. phs mutants of S. typhimurium hisD477

Isolation"	phs mutants		H ₂ S production		Cotransduction of phs with $hisD^b$	
	Strain	Mutation	Thiosulfate	Sulfite	Phs ⁺ His ⁺ /His ⁺	%
	hisD477	phs+	+	$d+^d$		
Expt 1 (DES)	CP22	phs-1	-	d+	13/40	24
					13/36	
	CP23	phs- 3	_	d+	13/50	29
					35/114	29
	CP24	phs-4	_	d+	0/40	<3
	CP25	phs- 6	_	_	0/50	<2
	CP29	phs-10	_	d+	0/31	<4
Expt 2 (UV)	CP27	phs-8	_	_	0/50	<2
	CP28	phs- 9	_		0/50	<2
Expt 3 (DES)	CP30	phs-11	_	_	0/45	<3
	CP31	phs-12	_	d+	0/59	<2

[&]quot; Mutagen used is given in parentheses. DES, Diethyl sulfate.

sequently, we have found that the FS400 plasmid carried in *E. coli* strain SB1542 (F-his/E. coli SB1541) does confer ability to produce H₂S to *S. typhimurium phs-his* deletion strains. We have redesignated the plasmid in strain SB1541 as FS417. Strain SB2063 was constructed by crossing SB1542 with SB2201. It thus appears that FS400 originally carried the wild-type *phs* locus but subsequently lost it through deletion or mutation.

A number of E. coli his mutant strains carrying FS401 or FS417 have been tested for H₂S production (Table 2). All the carrier strains contain extended his operon deletions except E. coli his B463, which carries a mutation in the his B gene and contains no other known mutation (1, 6). Of the strains tested, two produced H₂S from thiosulfate, XX54 and XX58, carrying FS417 and FS401, respectively. In both strains the carrier strain is his B463. Five His⁺ colony isolates of XX58 were cultured in nutrient broth supplemented with 20 µg of acridine orange per ml to induce plasmid curing. One His colony from each isolate was tested by stabbing into peptone iron agar, and all were found to be H₂S negative. This indicates that in XX58 the Phs⁺ phenotype is episomally determined.

In a final experiment, the FS401 episome was freshly introduced by conjugation into *E. coli hisB463*, using SB2887 as the plasmid donor and selecting F-ductants on minimal agar. Eight purified F-ductant clones were tested for H₂S reaction in peptone iron agar stabs. Only three of the isolates gave a typical H₂S-positive reaction at 1 to 2 days of incubation. Two gave negative reactions and the other three gave incomplete blackening of the stab growth. A rapid loss of

Table 2. H_2S production in strains of E. coli carrying S. typhimurium F-his plasmids

		Phs	H ₂ S production	
Strain	Genotype	pheno- type"	Thio- sulfate	Sulfite
SB1541	hisO-E3157 thr-4 leu-8 ara proA2 lacY1 gal-2 rpsL°	_	ND*	ND
hisB463	hisB463	_	_	_
RW84	$hisO$ - E eda edd $rpsL$ λ^r	-	-	-
SB1844	hisO-E750 met-77 galK2 ara-14 xyl-5 mtl-1 malA1 rpsL	-	ND	ND
TA2043	hisO-E6607 rpsL	_	ND	ND
SB1542	FS417/SB1541	_	ND	ND
XX54	FS417/hisB463	+	$\mathbf{d} + d$	_
SB2887	FS401/SB1541	_	ND	ND
XX58	FS401/hisB463	+	+	-
XX28	FS401/RW84	-	-	_
XX67	FS401/SB1844	-	ND	ND
	FS401/TA2043		ND	ND

[&]quot;Determined by peptone iron agar stabs.

the episome from the majority of clones during growth in the stabs could account for these results

Our results showing that the Salmonella Fhis plasmids can induce H_2S production in an E. coli hisB mutant strain suggest that the inability of E. coli to reduce thiosulfate to H_2S is due to a deficiency in the his-linked phs locus. Introduction of the Salmonella his-linked locus into

^b Strains were transduced to His⁺ with phage grown on the wild-type strain, CP2. His⁺ transductants were selected on minimal agar and tested for color reaction on Kligler iron agar plates.

Number of Phs⁺ His⁺ transductants/total number of His⁺ transductants.

^d d+, Delayed position reaction.

^b ND, Not determined.

Formerly strA'.

^d d+, Delayed positive reaction.

[&]quot;Eight purified His⁺ clones from the cross SB2887 × TA2043 were tested and all were negative.

1084 NOTES J. Bacteriol.

 $E.\ coli$ strains having extended his deletions did not lead to H_2S production. These strains may be deleted for some other locus required for H_2S production.

Relevant to the finding that production of H_2S can be episomally induced in $E.\ coli$ are reports of naturally occurring H_2S -producing $E.\ coli$ strains in which H_2S production is attributed to plasmids (3–5).

This investigation was supported by an award from the General Research Board of the University of Maryland.

We are very grateful to P. E. Hartman for his interest, support, and suggestions.

LITERATURE CITED

- Garrick-Silversmith, L., and P. E. Hartman. 1970. Histidine requiring mutants of Escherichia coli K12. Genetics 66:231-244.
- Lautrop, H., I. Ørskov, and K. Gaarslev. 1971. Hydrogensulphide producing variants of Escherichia coli. Acta Pathol. Microbiol. Scand. Sect. B 79:641-650.
- 3. Layne, P., A. S. L. Hu, A. Balows, and B. R. Davis.

- 1971. Extrachromosomal nature of hydrogen sulfide production in *Escherichia coli*. J. Bacteriol. **106**:1029–1030.
- Ørskov, I., and F. Ørskov. 1973. Plasmid-determined H₂S character in *Escherichia coli* and its relation to plasmid-carried raffinose fermentation and tetracycline resistance characters. J. Gen. Microbiol. 77:487–499.
- Stoleru, G. H., G. R. Gerbaud, D. H. Bouanchaud, and L. Le Minor. 1972. Etude d'un plasmide transferable determinant la production d'H₂S et la resistance a la tetracycline chez "Escherichia coli." Ann. Inst. Pasteur Paris 123:744-753.
- Struhl, K., J. R. Cameron, and R. W. Davis. 1976. Functional genetic expression of eukaryotic DNA in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 73:1471– 1475.
- Vogel, H. J., and D. M. Bonner. 1956. Acetylornithinase of *Escherichia coli*: partial purification and some properties. J. Biol. Chem. 218:97–106.
- Voll, M. J. 1972. Derivation of an F-merogenote and a φ80 high-frequency transducing phage carrying the histidine operon of Salmonella. J. Bacteriol. 109:741–750.
- Voll, M. J., L. M. Shiller, and J. Castrilli. 1974. hislinked hydrogen sulfide locus in Salmonella typhimurium. J. Bacteriol. 120:902-905.